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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

A ‘non-classical’ information theory of spectral line shape 

J. G. POWLESt and B. CARAZZAI$ 
+The Physics Laboratories, University of Kent, Canterbury, England 
:Centra di Spettroscopia Moleculare, Cagliari, Sardinia 
;zIS. receiaed 11th  March  1970 

Abstract. Information theory is used to obtain the most probable spectral line 
shape given only a knowledge of a finite number of moments of the line. The 
analysis of Powles and Carazza is extended to a consideration of non-classical 
information theory. This gives the possibility of a Lorentzian line shape which 
was not previously available. It is shown, in particular, that the common obser- 
vation of a line shape narrowing from Gaussian to Lorentzian is simply explained 
and can be related to a change in physical parameters. The method is applied 
to problems in magnetic resonance but is of wide validity. 

1. Introduction 
The use of information theory in statistical mechanics is well known (Jaynes 1957, 

Katz 1967) but it has not been used, as far as we are aware, in the analysis of spectral 
line shape. We have recently applied this method to the problem of the absorption 
line shape in nuclear magnetic resonance (Powles and Carazza 1970). This analysis 
was quite successful in predicting actual line shapes given only a few of the moments 
of the line, but did not include the commonly observed Lorentzian line shape which 
arises, for instance, in magnetic resonance for motional or exchange narrowing. In  
this paper we report an information theory which uses non-classical statistics which 
enables us to include the Lorentzian shaped line, in particular, and very considerably 
widens the scope for the analysis of spectral distribution by the information theory 
method. This and the previous analysis (Powles and Carazza 1970) is quite general 
and may be applied to almost any situation where the results can be described by a 
spectrum for which moments of the distribution can be calculated. Further applica- 
tions will be described in a later publication. 

2. Classical information theory line shapes 
We define the nth moment iWn of a spectral distributionf(w) by 

In  most cases these moments can be calculated, at least in principle, and are usually 
the only exact information about a spectral line shape which can be calculated. In  
practice only a few lower moments are actually available owing to computational 
and/or algebraic difficulties for complex systems. However, the moments do not 
actually give the line shape and we consider the problem of finding the most probable 
line shape given a finite number of moments. This is achieved by minimizing the 
information 

3 = C P ( 4  In {P(wJ) (4 
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where p ( w J  is the probability of finding a component of the spectrum at w t  and 
p ( w )  ~ f ( w ) .  Earlier we showed for instance that, given a finite total intensity, and a 
knowledge of the second moment only, the most probable line shape is Gaussian, 

f( U )  cc exp( - X u 2 )  

f( w )  K exp( - hw2 - pw4) 

(3) 
where h = 4!V2. 

If only the second and fourth moments are known the most probable line shape is 

(4) 
where h and p are obtained from M2 and .M4, and so on. 

Although such expressions include a surprising variety of line shapes (Powles and 
Carazza 1970) they do not include a Lorentzian and more particularly they do not 
include ‘narrowed’ lines since the ratio of M 4 / M Z 2  does not exceed three, except in 
some very special cases. 

An alternative analysis to that given by Powles and Carazza (1970) who used 
equation (2), will prove to be more useful in this paper. We consider complexions 
more directly, as one does in statistical mechanics, although we must emphasize that 
m-e are not necessarily concerned with statistical mechanics problems as such. 

Suppose we have n,  contributions to the intensity of the spectrum at w t .  The  
total number of contributions is 

,/lr = C n , .  (5) 
The  number of configurations WB is 

The  second moment -1g2 of the line is 

Maximizing W,, i.e. minimizing 3, subject to ( 5 )  and (7) we have, 

where Q and X are Lagrange undetermined multipliers. 
Hence 

Hence using (6) and Stirling’s relation we have 

so that 

i.e. 

-- - - Inn, 8WB 
ani 

n, = exp( - Q -hi2) 

f ( w )  = A ,  exp( -Xu2) (3) 

as before, for 144, only known. Corresponding generalizations can be written down 
immediately. 
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3. Non-classical information theory line shapes 
The analysis just given as well as that of Powles and Carazza (1970) and the defi- 

nition of information in equation (2) correspond to classical, or Boltzmann statistics. 
This corresponds to the assumption that each contribution to a spectral line is 
‘distinguishable’. We now use Bose-Einstein statistics to calculate W, i.e. we assume 
that the individual contributions to.f(w) at a given w are not distinguishable. As in 
statistical mechanics (e.g. Wilks 1961) we group the contributions in ranges k with 
nk contributions at or near wk with ‘degeneracy’ g k  so that 

so that 

i.e. 

JVe maximize WE- subject to fixed Jr and known M2 which yields 

g k  nk = - 
exp@ + hi2) - 1 

Clearly we must have exp ,B > 1 and h > 0. 
Corresponding generalizations for any number of known moments can be written 

down immediately. A correspnds to a ‘density of states’ function. We take it to be a 
constant since this is the minimum information assumption. 

If we had assumed we knew only the first moment we would have found instead 
of (14) 

1 
exp(p + aw) - 1 . f ( w )  cc -- 

which in statistical mechanics is of course the Einstein-Bose distribution. 

shapes for consideration in a later paper. 
For simplicity we shall consider only equation (14) and leave more elaborate line 

Clearly, when ,B is large (14) goes over to (3), i.e. a Gaussian line shape 

f ( w )  2: A exp( - p )  exp( -hw2) .  (3 ’1 
If ,8 and h are small the exponential in (14) may be expanded to give 

A 
f ( w )  2: -- 

p + xu2 
(14‘) 

which is a Lorentzian line shape, provided w is ‘not too large’. In  fact it is a cut-off 
Lorentzian, as we show below. The situation ,B and h small corresponds in statistical 
mechanics to an approach to Einstein-Bose condensation at low temperatures. Thus, 
as the parameter p varies from large to small, our line shape (14) goes over from Gaus- 
sian to Lorentzian and we shall show that for the special case of fixed second moment 
this corresponds to line narrowing, as is observed for instance for motional or ex- 
change narrowing in magnetic resonance and many other fields. 
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In  our original Boltzmann analysis the line shape, for -W2 given, was entirely 
determined by ;Vr, and the total intensity. However, in the Einstein-Bose case we 
have, for M, given, three parameters A, ,8 and X since in this case A and p appear 
separately and not as the combination A exp( - p), W-e propose to circumvent this 
difficulty by assuming first we know only the total intensity and ,If2, which gives (14), 
and then that we have a disposable parameter p which fixes the value of .W4 and so 
fixes the values of X and A. We show later (equation 24) that, at least in one applica- 
tion, /3 can be related to a physical variable. 

JVe can show that 

and 
33 

n=l 
Using (17) and (18) we have 

Clearly if ~ ‘ i e  choose /3 + CO then M4/AW22 --f 3 and X + as for a Gaussian. If 
we choose p + 0 but -If2 finite, then +M4/11fz2 --f CO, and X + 0 as for a Lorentzian, 
thus confirming (14’). In  fitting a curve f ( w ) ,  given &!l, and -W4, it is convenient to 
find p using (19) and then X using (17) and (16), and to find A from (20) using the 
known total intensity I where 

If 
A = I1Y-l. (20) 

(21) 
a- 

S,  = 2 exp{ - ( 1 2  - I)p}dl - 2 )  

n = l  
we have 

and 

I t  will also be useful to consider the full width at half height 3 w l i 2  off(w) in (14) 
which is given by 

(22) 
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In  magnetic resonance I and M2 are constant (e.g. Abragam 1961) independent 
of the motion and so we illustrate the line shape (14) in figure 1, for I = 1 and for 
fixed iVr, for various values of p. The parameters are given in table 1. 

Reduced frequency w / ( 2 M 2 )  ’* 
Figure 1. Plots of (half) the line shapef(w), equation (14), for I = 1 and fixed 
M a ,  for equal to  5 ,  0.5, 0.2, 0.05, 0.02 and 0.01. Expanded ordinate scales are 

used to  show the behaviour a t  large w .  

Table 1. Parameters for line shape for known 

S I  Sa S B  M4/MZ2 h x2Mz A/I ~ ~ 1 , 2 / ( 2 ~ 3 4 2 ) ~ ‘ ~  P 
cc; 
5 
0.5 
0.2 
0.05 
0.02 
0.01 
0 

1 
1.005 
1,891 
3.107 
6.81 

11.30 
16.43 
02 

1 
1.002 
1.336 
1.606 
1.989 
2.183 
2.294 
2.61 2.. . 

( =  m)) 

1 
1.001 
1.142 
1.223 
1,299 
1.322 
1.331 
1.341 ... 

( =  iw) 

3 
3.006 
3.63 
4.42 
6.67 
9.29 

12.12 

1 
0.997 
0.707 
0.517 
0.294 
0.196 
0.144 
0 

0.564 
0.561 
0.251 
0,131 
0,045 2 
0,0225 
0.01 34 

CO 

1.665 
1,664 
1.371 
1.136 
0.805 
0.633 
0.5 25 
0 

Figure 1 shows, for I = 1, how the Gaussian narrows to a Lorentzian and the 
intensity near w = 0 increases as ,8 gets smaller. However, for large enough 
w/(2M2)1’2, the curve of f ( w )  cuts off so that the second moment remains finite 
however small the value of /3. This is illustrated in figure 2 where we compare f ( w )  
for ,8 = 0.01 with a Lorentzian having the same intensity and the same width at half 
height. Even for this relatively small narrowing (by the factor 3.2) the curve is almost 
Lorentzian and an experimental fit would probably be made for a Lorentzian with 
maximum intensity 1.34 which is not very different from f ( w ) ,  except for large w, 
as indicated on figure 2. 

For ‘narrowed’ lines, i.e. p small, it is usual to express the Lorentzian in terms of 
a correlation time T (e.g. Kubo 1962) where 
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I 1 I I  
1.5 2.0 2 . 5  

Reduced frequency w / ( 2 M , ) ' "  

Figure 2.  .A comparison of f (w) ,  equation (14)) for /3 = 0.01 and a Lorentzian 
L of the same width at half height and total intensity. Also shown is a Lorentzian 

x of the same width at half height and the same intensity a t  w = 0. 

I I I I 

i 
1.21 , 

Reduced t ime  t(2M2)''' 

Figure 3 .  The transient decay B(t),  equation (25), corresponding tof(w) for 
p = 0.2, showing how B(t) is a sum of Gaussians for 1, 2, 3, 5 , 7 , 9  and 21 terms. 
Also shown is an exponential decay, L1, for the same width at half height and 
total intensity asf(w). The  exponential Lz  corresponds to the same width at half 

height but is a 'best fit' to  B(t). 
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Consequently, using (22’) we can identify /3 in terms of T ,  i.e. 

T cc /3’ for any value of p. (24)  
This gives, for instance, a very plausible method of interpreting motional or exchange 
line narrowing in magnetic resonance. The  curvesf(w) which we give in figure 1 are 
very similar to those given by the Kubo-Anderson (1954) theory of spectral line nar- 
rowing which also applies to narrowing from a Gaussian to, effectively, a Lorentzian. 

4. Transients 
Spectral information may often be obtained by the transient decay method. The  

transient is simply the Fourier transform of f(w). The Fourier transform B(t) of (14) 
(normalized to unity at t = 0) is 

0: 

B(t)  = S1-l  2 exp(- (a- 1)P}.-’ exp( - t2),/4nX. (25 1 
n = l  

For /3 -+ CO this approaches the Gaussian exp( - t2/4h) ,  and for /3 -+ 0 it approaches 
the exponential exp( -21tl/Awli2), where h w l j 2  is given by (22’). 

I t  is of interest that B(t) has no cusp at t = 0 and always cuts off faster than the 
Lorentzian (for /3 small) for large enough times. I t  shows how the transient (called 
the Bloch decay in magnetic resonance), for finite /3, is made up of a sum of Gaussians. 
This is illustrated explicitly for /3 = 0.2 in figure 3. In  this figure we also show a 
Lorentzian with the same Aw,,2/(2M2)1/2 and total intensity and also the ‘best fit’ 
Lorentzian. Even for such modest narrowing (by the factor 1.5) as represented by 
,8 = 0.2 a large number of terms in (23) are required for an adequate representation 
of B(t). We show the result for 21 terms which gives 99.5 % of B(t). 
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